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Abstract Introduction

Version 3 of the NPARC Navier-Stokes code in-

cludes support for large-grain (block level) paral-

lelism using explicit message passing between a het-

erogeneous collection of computers. This capability
has the potential for significant performance gains,

depending upon the block data distribution. The
parallel implementation uses a master/worker ar-

rangement of processes. The master process assigns
blocks to workers, controls worker actions, and pro-

vides remote file access for the workers. The pro-

cesses communicate via explicit message passing us-

ing an interface library which provides portability to
a number of message passing libraries, such as PVM

(Parallel Virtual Machine). A Bourne shell script is

used to simplify the task of selecting hosts, starting

processes, retrieving remote files, and terminating

a computation. This script also provides a simple
form of fault tolerance. An analysis of the compu-

tational performance of NPARC is presented, using

data sets from an F/A-18 inlet study and a Rocket

Based Combined Cycle Engine analysis. Parallel

speedup and overall computational efficiency were
obtained for various NPARC run parameters on a
cluster of IBM RS6000 workstations. The data show

that although NPARC performance compares favor-
ably with the estimated potential parallelism, typi-

cal data sets used with previous versions of NPARC
will often need to be reblocked for optimum parallel

performance. In one of the cases studied, reblocking
increased peak parallel speedup from 3.2 to 11.8.

*This work was supported by the NASA Lewis Re-
search Center under contract NAS3-27186 with Gary Cole
as monitor.

Current trends in computational fluid dynamics

stress an ever-increasing need for greater compu-

tationM power from constant or even decreasing
resources. In an effort to provide traditional su-

percomputer performance using lower-cost worksta-

tions, version 3 of the NPARC Navier-Stokes code

includes support for large-grain parMlelism using ex-
plicit message passing between a heterogeneous col-

lection of computers.

Since NPARC is a multi-block code, a natural

choice for parallel decomposition is by block. This

leads to performance being sensitive to the block

data distribution. Typical existing NPARC applica-
tions have had their blocks designed for primarily ge-

ometric reasons. This usually results in a highly un-
balanced data distribution between a small number

of blocks. By suitably balancing the load between

blocks, possibly via a simple block splitting proce-

dure, NPARC applications can now achieve signif-

icant performance improvements through the com-

bined computational power and memory of a collec-
tion of workstations.

The following sections describe the parallel imple-

mentation, how measurements of performance were

made, and the performance results for three real-
world data sets.

Copyright (_1997 by the American Institute of Aeronau-
tics and Astronautics, Inc. No copyright is asserted in the
United States under Title 17, U.S. Code. The U.S. Govern-
ment has a royalty-free license to exercise all rights under the
copyright claimed herein for government purposes. All other
rights are reserved by the copyright owner.



Parallel Implementation

The addition of a parallel processing capability re-

quires addressing issues related to process organiza-

tion, file input and output, message passing, system

startup and shutdown, and parallel vs. serial results.

Process Organization

NPARC uses a master/worker process organization
similar to that of the NASTD code 1 . The master

process is responsible for worker block assignment

and sequencing while worker processes do the actual

calculations. The master process also acts as a file
server for the worker processes. This avoids requir-

ing a common file system across all processors.

Having a single master process serve multiple

worker processes introduces a potential performance

bottleneck. It is possible, via a command-line op-

tion, to collect statistics on the time workers spend

waiting for service by the master process. As ex-

pected, the wait time goes up as the number of work-
ers increases. However, in most cases the master

process response time is not the limiting factor to

performance.

The main determinant to parallel performance is
the block data distribution and how those blocks are

assigned to worker processes. NPARC does not con-
trol block data distribution, but does employ two

methods for block assignment in order to improve

the load balance across worker processes depending

upon the mode of calculation, interlocked or non-

interlocked, which is controlled by the input param-
eter ILOCK.

Interlocked mode, which is the default mode, is

required if bit-for-bit identical results are desired be-

tween runs using the same input. In this mode all
interface data updates are strictly synchronized and

deterministic (see Figure 1). When statically balanc-

ing an interlocked calculation, NPARC first sorts the

blocks according to size, and then assigns blocks in

phases related to the synchronization phases which

occur at runtime. Worker load within a synchroniza-

tion phase is balanced, but overall worker load may

be quite unbalanced.
In contrast to interlocked mode, non-interlocked

mode is non-deterministic (see Figure 2). Results
from runs using the same input will not necessarily

be bit-for-bit identical. This is due to the lack of syn-

chronization between interface data updates. Non-

interlocked mode is typically suitable for steady-

state calculations. When statically balancing a non-
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Figure 1: Interlocked computation sequence.

IterationN IterationN+I

Worker1

Worker2 •=o

Worker3 .....

BlockComputation

• BoundaryCondi_onRead/Write
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interlocked calculation, NPARC first sorts the blocks

according to size and then assigns blocks to workers
in order to balance overall worker load. This method

of balancing results in higher performance than in-

terlocked mode and is preferred when the determin-

ism of interlocked mode is not required. The lack of

interface synchronization in this mode also has the

effect of allowing worker processes to be working on

different iterations, depending upon how imbalanced

the blocks are. The input parameter ISYNC is pro-

vided to limit this effect. All worker processes are
required to be within ISYNC iterations of each other.

All worker processes are also required to have com-

pleted the same iteration before a restart file is writ-

ten. To use this mode for time-accurate calculations,
ISYllC must be set to zero.

The master/worker process organization chosen is

not the only way a multi-block code can be run

in parallel. For instance, all processes could be

peers, maintaining a synchronized view of the system
state via various mechanisms. However, the mas-

ter/worker arrangement is likely to be more flexible

for future enhancements such as interactive steering
or coupling with other codes in a multidisciplinary
environment.



Input/Output Methods

In a distributed environment file handling can some-

times be a problem. As stated above, NPARC's

master process acts as a file server for the worker

processes. Thus, for a worker to read (or write) a
file it sends a read (or write) request to the master

process which then returns (or accepts) the data.

This file server arrangement is used for restart, in-

terface, and interpolation files. Worker output files

such as the convergence history are collected at the
end of a run by the runnparc script to be described

later. All other files have temporary lifetimes and

are handled independently by each worker process

in typical non-distributed fashion.
File placement may be controlled via the

NPARC_TMP environment variable. This is particu-

larly useful in clustered environments where files de-
fault to an NFS file server. An appropriate setting

of NPARC_THP can then cause temporary files to be

placed on locally attached disks, avoiding NFS over-
heads and network contention.

In NPARC 2.0, setting the compile-time parame-

ter MDISK appropriately would avoid disk I/O over-

head when accessing block data by keeping this data

in memory. NPARC 3.0 adds a similar capability for
interface and interpolation data via the MIFACE and

MINTEttP compile-time parameters, respectively.

Message Passing Interface Layer

A layer of low overhead subroutines are used to iso-
late the NPARC code from the differences between

various message passing library interfaces. These

routines also provide a library-independent mecha-

nism for process and messaging statistics.

By using this interface layer, NPARC has been

run over MPI (Argonne MPICH and SGI implemen-

tations), IBM MPL, and PVM (Oak Ridge and Cray

T3D implementations).

System Startup and Shutdown

NPARC uses a Bourne shell script ruanparc to han-

dle issues related to system startup, fault recovery,

and shutdown. A single script is used to support the

various message passing environments NPARC can

use, providing the user with a single uniform inter-
face. Use of a script separate from the NPARC code

itself allows site and/or user customization of how
the code is run without affecting the code itself.

During system startup hosts specified by the user

or queueing system are scanned to ensure that
NPARC and the message passing environment are

available. This avoids various difficult-to-interpret

errors when starting a distributed application. Once
the host scanning phase is complete, any initializa-

tion files required by the message library (i.e. the

PVM hostfile) are created and any environment ini-

tialization (such as starting PVM daemons) is per-
formed. Finally, the master NPARC process is in-

voked.

During the run, if a fault occurs (such as worker

process abort) the NPARC master process will ter-

minate. Upon master process termination, the

runapaxc script interrogates a file to determine why
the master process stopped and the number of com-

pleted iterations. If the reason for stopping was not

a normal completion of the calculation and not a
known unrecoverable error (such as an erroneous in-

put file), then the script will automatically restart
the calculation from the last restart file written. To

avoid constantly restarting in situations which re-

peatedly fail, runnpaxc requires that the number of

completed iterations increase within a configurable
number of restart attempts. This simple form of
fault tolerance allows NPARC to recover from var-

ious problems (such as host failure) automatically.

Obviously, loss of the runapaxc host is fatal.

Once the calculation completes normally (or too

many failures have occurred) runnpaxc will perform

any necessary message library cleanup (such as PVM

daemon shutdown), collect output files, and remove

worker temporary files.

Result Comparison

Since block interface data is exchanged differently

when running in parallel, the results of serial and

parallel calculations are not expected to be bit-for-
bit identical. The differences are the result of differ-

ing block evaluation orders. This affect also occurs
with the serial code when the block order is explic-

itly changed via the NPARC input file.

Figure 3 shows pressure contours calculated af-

ter converging to a steady-state solution with an
L_ residual of 1 x 10 -s for the "Case 4" example

from the NPARC user's guide s. For this calcula-

tion, the blocks are solved serially in normal (1, 2,

3) order. Performing the same calculation, but us-

ing a reversed (3, 2, 1) block evaluation order results
in a maximum deviation from the original calcula-

tion of 6.79 × 10 -s. Performing the same calculation

again, but this time evaluating the blocks in parallel
results in a maximum deviation of 4.65 × 10 -_.

This example shows that while the parallel re-
sults are not bit-for-bit identical to results from a

serial calculation, the differences are the same order

of magnitude as those resulting from a serial calcu-
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Figure3: Case 4 pressure contours after converging

to an L2 residual of I x 10 -s, block evaluation order:

1,2,3.

lation using a different block evaluation order.

Performance Measurement

Metrics

The primary metric used in this study is Itera-

tions Per Hour (IPH). This is a more concrete and

application-oriented metric than a simple speedup

ratio. Speedup ratios can be misleading when com-

paring different block data distributions since better
parallel block distributions can adversely affect se-

rial performance.

IPH ignores startup and shutdown overheads

which are typically a small percentage of total run-

time for a real application, but are often a large per-

centage for the short runs used in performance anal-

yses such as described here. IPH also ignores the ef-

fect that block data distribution has on convergence
rate. Time to convergence would be a better metric,

but the time required would preclude studies such
as that described here.

The traditional parallel speedup metric is easily

derived as the ratio of parallel IPH to serial IPH.

Processor efficiency can then be obtained as the ratio

of parallel speedup to the number of processors used.

Also reported below is estimated speedup. This

metric is directly based upon the block data distribu-

tion. It is the ratio of the total number of grid points

assigned to the most heavily loaded worker process

to the total number of grid points in all blocks. This

is a measure of the potential parallelism. It neglects

all parallel overheads.

Measurement Procedure

Performance was measured using IBM RS/6000

model 590 workstations using either an Ethernet or

ATM network. The message passing library used
was PVM version 3.3.11. Non-interlocked mode

runs were configured with NPARC input parameter
ISYNC=2.

In an effort to keep serial vs. parallel performance

comparisons fair, all serial tests were performed on

a machine with sufficient memory to avoid inflicting

the serial test with additional paging overhead. In
addition, to isolate computational performance from

possible NFS overheads and network contention, all

files were located on locally attached disks.

The IPH metric was obtained by enabling the
NPARC -trace iterations command-line option

which reports elapsed time per iteration. An aver-

age of the reported elapsed times per iteration was

taken after dropping anomalous values from startup
and shutdown phases of the calculation. While no

other users were allowed on the systems during the
measurements, various system programs would occa-

sionally be executed for automated system mainte-

nance. Because of this, the exact performance mea-

sured for any specific data point may not be repro-
ducible. However, the trends in performance are re-

producible, and are expected to be valid for other

system configurations as well.

Performance Results

F/A-18 Inlet

The firstdata set used for performance analysisis

based on an F/A-18 inletflow study3. The default

Beam-Warming pentadiagonal solveris used with

the Spalart-Allmarasturbulence model. The data

has been modified from the originalinorder to con-

form to NPARC 3.0 input requirements. The block

data distributionfor thiscase isshown in Figure 4.

Note the considerablevariationin block size,and

the largenumber of block interfaces.These factors

resultin a maximum estimated speedup of only 6.0

and over 900 messages per iteration.

Figure 5 shows the performance when running in

non-interlocked mode with various memory alloca-

tion options in effect. All runs were performed us-
ing an Ethernet network. Peak performance occurs

with seven processes, with a measured speedup of
4.9 compared to an estimated speedup of 5.9.

The relative insensitivity of performance with re-

spect to memory allocation options is likely due to a

combination of using a locally attached disk and disk

buffer caching in the operating system. Performance
when accessing files via NFS is likely to be much

more sensitive to what data is resident in memory
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and what must be brought in from disk. Regardless
of disk access method, it is most important to have

block data resident (when there are less worker pro-

cesses than blocks). Next in importance is keeping
interface data resident. Keeping interpolation data

resident appears to be fairly unimportant to appli-

cation performance, though there is a measurable
effect.

Figure 6 shows the performance when running in
interlocked mode. These runs have all data resi-

dent in memory. Estimated performance for both
interlocked and non-interlocked modes are shown to

indicate the effect of the different block assignment

strategies in the two modes. Runs using Ethernet
and ATM networks are shown, displaying the sen-

sitivity of application performance on network per-

formance. Peak Ethernet performance occurs with

twelve processes, with a measured speedup of 3.0

compared to an estimated speedup of 5.1. Peak

ATM performance occurs with sixteen processes (no
more ArM hosts were available for testing), with a

measured speedup of 4.0 compared to an estimated

speedup of 5.4.

With the poor load balance between blocks and

the large number of interfaces, the F/A-18 data set

provides an example of how NPARC performs in a
near worst case scenario. Non-interlocked mode per-

formance is fair, but interlocked mode performance

is quite poor. Even with a high-performance net-

work such as ATM, application performance is dis-

appointing, indicating that code modifications are

required. Such modifications have begun, and pre-

Figure 5:F/A-18 non-interlocked solution perfor-
mance using an Ethernet network.
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Figure 7: Original RBCC block data distribution.

liminary results are showfl at the end of this paper.

Rocket Based Combined Cycle Engine

The second data set used for performance analysis
is based on a Rocket Based Combined Cycle Engine

(RBCC) inlet study 4. The default Beam-Warming
pentadiagonal solver is used with the Chien k-¢ two-

equation turbulence model. The data has been mod-

ified from the original in order to conform to NPARC

3.0 input requirements. The block data distribution

for this case is shown in Figure 7. Note the con-
siderable variation in block size. This results in a

maximum estimated speedup of only 3.4.

Figure 8 shows the performance when running in
both interlocked and non-interlocked modes. These

runs have all data resident in memory and use the

ATM network. Peak non-interlocked performance

occurs with 5 processes, with a measured speedup

of 3.2 compared to an estimated speedup of 3.4.
Peak interlocked performance occurs with 7 pro-

cesses, with a measured speedup of 3.2 compared

to an estimated speedup" of 3.4. The significantly

lower overall performance shown here compared to

the F18 performance is likely due to the more com-

plex turbulence model.

The limited number of blocks and poor balance of

this data set is likely to be representative of many

current NPARC applications. Parallel performance

with respect to the potential parallelism is good, pri-

marily due to the limited number of block interfaces.

The limiting factor is the imbalance in the block data

Figure 8: Original RBCC solution performance us-

ing an ATM network.

distribution.

Reblocked RBCC

The third data set used for performance analysis is
taken from the RBCC case described above. How-

ever, the data has been reblocked using a simple

block-splitting routine in order to approximately
balance the amount of data in each block. The

blocks were split using a cutting plane perpendicular
to the main flow path. The resulting block data dis-

tribution is shown in Figure 9. Note that although

the balance between blocks has been improved, both

the total number of points (due to block overlaps)
and the number of block interfaces has increased.

This reblocking results in an increase in maximum

estimated speedup from 3.4 to 12.6 and an increase

in messages per iteration from 83 to 191.

Figure 10 shows the performance when running in
both interlocked and non-interlocked modes. These

runs have all data resident in memory and use the

ATM network. Peak non-interlocked performance

occurs with 16 processes, with a measured speedup

of 11.8 compared to an estimated speedup of 12.6.

The temporary plateau in performance at 8 pro-

cesses appears to be the result of the block assign-

ment strategy and master/worker process arrange-

ment, but this phenomenon needs further investi-

gation. Peak interlocked performance occurs with

16 processes, with a measured speedup of 10.6 com-

pared to an estimated speedup of 12.6. Beyond 8
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processes parallel overheads become evident. This

is primarily the result of worker synchronization.
As can be seen from comparing figures 8 and 10,

simply splitting existing blocks in a manner to ap-

proximately balance their size can have dramatic ef-
fects on parallel performance. Note that even when

the original block distribution is performing well

(such as at 4 processes) the reblocked case has bet-

ter performance. This increased performance is not

entirely free of drawbacks. The increased number
of blocks will increase the number of iterations re-

quired for a given level of convergence. However, the

performance advantage of the reblocked case is ex-

pected to outweigh the disadvantage of the slightly

slower convergence rate.

Figure 10: Reblocked RBCC solution performance

using an ATM network.

majority of the performance improvement is likely
due to the improved interlock scheme. Figure 12

shows the before and after results when running
the reblocked RBCC non-interlocked calculation. In

this case performance is essentially unchanged, the
variations shown are not significant given the un-

certainty in the measurements. Note that the tem-

porary plateau in performance at 8 processes noted

previously is still evident. This shows that the phe-
nomenon is not the result of inefficient message pack-

ing or message servicing.

Additional changes which may be included in fu-

ture releases include enabling worker processes to

exchange interface data directly rather than via the

master process, and performing multiple block solu-
tion iterations between block interface updates.

Future Releases

Various modifications to the released NPARC 3.0

code have been made to improve its performance.
These include a less restrictive interlock barrier tech-

nique, better message packing, and tracking which

worker is running the slowest so that its messages

may be given a higher priority. Figure 11 shows the
before and after results of these changes, using the

F/A-18 interlocked calculation as the test case. Both
the Ethernet and ATM performance have been con-

siderably improved, with the ATM performance rea-

sonably close to the estimated speedup curve. The

Concluding Remarks

The new parallel capability of NPARC can provide

a considerable boost in performance over the serial

version provided a reasonably balanced block dis-

tribution is used along with a good network such as

ATM. The computed results are different than those

calculated by the serial code, but the differences are

qualitatively the same as those resulting from an al-
tered block order in a serial computation.
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